Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor
نویسندگان
چکیده
All-solid-state sodium-ion batteries are promising candidates for large-scale energy storage applications. The key enabler for an all-solid-state architecture is a sodium solid electrolyte that exhibits high Na(+) conductivity at ambient temperatures, as well as excellent phase and electrochemical stability. In this work, we present a first-principles-guided discovery and synthesis of a novel Cl-doped tetragonal Na3PS4 (t-Na3-xPS4-xClx) solid electrolyte with a room-temperature Na(+) conductivity exceeding 1 mS cm(-1). We demonstrate that an all-solid-state TiS2/t-Na3-xPS4-xClx/Na cell utilizing this solid electrolyte can be cycled at room-temperature at a rate of C/10 with a capacity of about 80 mAh g(-1) over 10 cycles. We provide evidence from density functional theory calculations that this excellent electrochemical performance is not only due to the high Na(+) conductivity of the solid electrolyte, but also due to the effect that "salting" Na3PS4 has on the formation of an electronically insulating, ionically conducting solid electrolyte interphase.
منابع مشابه
A Na+ Superionic Conductor for Room-Temperature Sodium Batteries
Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and develop...
متن کاملSuperionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.
Innovative rechargeable batteries that can effectively store renewable energy, such as solar and wind power, urgently need to be developed to reduce greenhouse gas emissions. All-solid-state batteries with inorganic solid electrolytes and electrodes are promising power sources for a wide range of applications because of their safet...
متن کاملAntiperovskite Li3OCl Superionic Conductor Films for Solid‐State Li‐Ion Batteries
Antiperovskite Li3OCl superionic conductor films are prepared via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. The applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.
متن کاملUnparalleled Lithium and Sodium Superionic Conduction in Solid Electrolytes with Large Monovalent Cage-like Anions.
Solid electrolytes with sufficiently high conductivities and stabilities are the elusive answer to the inherent shortcomings of organic liquid electrolytes prevalent in today's rechargeable batteries. We recently revealed a novel fast-ion-conducting sodium salt, Na2B12H12, which contains large, icosahedral, divalent B12H122- anions that enable impressive superionic conductivity, albeit only abo...
متن کاملComputational studies of solid-state alkali conduction in rechargeable alkali-ion batteries
The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main componen...
متن کامل